The Quaternion Numbers

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Quaternion Numbers

In this article, we define the set H of quaternion numbers as the set of all ordered sequences q = 〈x, y,w, z〉 where x,y,w and z are real numbers. The addition, difference and multiplication of the quaternion numbers are also defined. We define the real and imaginary parts of q and denote this by x = R(q), y = I1(q), w = I2(q), z = I3(q). We define the addition, difference, multiplication again...

متن کامل

Some Operations on Quaternion Numbers

(1) <(z1 · z2) = <(z2 · z1). (2) If z is a real number, then z + z3 = <(z) + <(z3) + =1(z3) · i+ =2(z3) · j + =3(z3) · k. (3) If z is a real number, then z − z3 = 〈<(z)−<(z3),−=1(z3),−=2(z3), −=3(z3)〉H. (4) If z is a real number, then z · z3 = 〈<(z) · <(z3),<(z) · =1(z3),<(z) · =2(z3),<(z) · =3(z3)〉H. (5) If z is a real number, then z · i = 〈0,<(z), 0, 0〉H. (6) If z is a real number, then z · j...

متن کامل

Some Operations on Quaternion Numbers

In this article, we give some equality and basic theorems about quaternion numbers, and some special operations. the notation and terminology for this paper. In this paper z 1 , z 2 , z 3 , z 4 , z are quaternion numbers. The following propositions are true: (1) (z 1 · z 2) = (z 2 · z 1). (2) If z is a real number, then z + z 3 = (z) + (z 3) + 1 (z 3) · i + 2 (z 3) · j + 3 (z 3) · k. (4) If z i...

متن کامل

Inner Products, Group, Ring of Quaternion Numbers

The articles [9], [1], [3], [4], [6], [5], [2], [7], and [8] provide the notation and terminology for this paper. We use the following convention: q, r, c, c1, c2, c3 are quaternion numbers and x1, x2, x3, x4, y1, y2, y3, y4 are elements of R. 0H is an element of H. 1H is an element of H. Next we state several propositions: (1) For all real numbers x, y, z, w holds 〈x, y, z, w〉H = x+y · i+ z · ...

متن کامل

Quaternion Dynamics of the Brain

In previous paper [1] an approach to nonlinear dynamical modeling of interaction between automatic (A) and conscious (C) processes in the brain was presented. The idea is to use complex field with real and imaginary components representing Aand C-processes. The interaction is due to the nonlinearity of the system. This approach was illustrated on the nonlinear equation for the current density i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Formalized Mathematics

سال: 2006

ISSN: 1898-9934,1426-2630

DOI: 10.2478/v10037-006-0020-1